专利摘要:
故障電流制限器(FCL)物品は、基板、基板の上に横たわるバッファ層、およびバッファ層の上に横たわる高温超電導(HTS)層を含む超電導テープセグメントを含んで開示され、ここで、前記超電導テープセグメントは、連続的であり、複数の巻き線を持つメアンダーパスを形成する。該物品はまた、前記超電導テープセグメントに電気的に接続された分路回路を含む。
公开号:JP2011508968A
申请号:JP2010539754
申请日:2008-12-17
公开日:2011-03-17
发明作者:ウェイン;エー. オードン;カセグン テクレットサディック;ドリュー;ダブリュ. ヘイゼルトン
申请人:スーパーパワー インコーポレイテッド;
IPC主号:H01L39-16
专利说明:

[0001] 本開示は、故障電流制限器に向けられており、かつ、特に、超電導物品を用いる故障電流制限器に向けられている。]
背景技術

[0002] 電流制限装置は、電力送信、および配電システムにおいて重要である。落雷、接地ワイヤ、または動物干渉等の種々の理由により、短絡条件は電流の鋭いサージを生じ得る電力グリッドの種々のセクションにおいて展開し得る。もし、しばしば故障電流と呼ばれる、この電流サージが前記グリッドシステムを通して用いられる開閉装置の保護能力を超えれば、該グリッド設備、および該システムに接続された顧客負荷に壊滅的な損傷を与え得る。]
[0003] 超電導導体、特に高温超電導導体(HTS)材料は、ある動作条件の下で“可変インピーダンス”の効果を生ずるので、電流制限装置における使用によく適している。超電導導体の材料は技術の社会において永く知られ、理解されてきた。液体ヘリウムの使用を要求する温度(4.2K)で超電導特性を示す低温超電導体(低−Tc又はLTS)は1991年以来知られてきた。しかしながら、酸化物ベースの高温(高−Tc)超電導体が発見されたのは幾分最近になってからである。1986年あたりに液体窒素温度(77K)以上の温度で超電導特性を有する最初の高温超電導体(HTS)、すなわちYBa2Cu3O7-X(YBCO)が発見され、これにつづいて過去15年にわたってBi2Sr2CaCu3O10+y(BSCCO)及びその他、を含む付加的な材料が開発されてきた。高温超電導体(高−Tc超電導体)の開発は、このような超電導体を比較的高価な液体ヘリウムに基づく極低温基盤で動作させるよりむしろ、液体窒素で動作させるとコストを低下できることに部分的に依存して、このような材料を含む超電導体および他の装置の経済的に実現可能な発展の可能性を、創り出してきた。]
[0004] 非常に多くの可能な応用の中で産業はこのような材料の発電、送電、配電、および貯蔵を含む電力産業における使用を展開させることを求めてきた。この点に関し、銅ベースの商用電力要素の本質的な抵抗は、毎年10億ドルの電力の損失の責任があると評価されており、したがって、電力産業は送電および配電電力ケーブル、発電機、変圧器及び故障電流妨害器/制限器等の電力要素における高温超電導体の利用に基づき、利益を得る立場にある。さらに、電力産業における高温超電導体の他の利点は、従来技術に対する、電力処理能力の3−10%の増加、電力設備の大きさ(すなわち、接地面積)および重量の実質的な低減、環境衝撃の低減、より大きい安定性、および増大した容量を含む。このような高温超電導体の利点が極めて強力なものであり続けている間にも、さらなる多くの技術的挑戦が、高温超電導体の製造及び商業化において大規模に存在しつづけている。]
[0005] 高温超電導体の商業化に関連した挑戦の多くは、種々の電力要素の形成に用いることのできる超電導テープセグメントの製造の回りに存在する。超電導体テープセグメントの第1世代は上述のBSCCO高温超電導体の使用を含む。この材料は一般に、貴金属、代表的には銀、のマトリックス内に埋め込まれた分離したフィラメントの形で設けられる。このような導体は電力産業で実施するに必要な長い長さ(キロメートルのオーダー)に作ることができるが、材料及び製造コストのためにこのようなテープは広く商業的に実現可能な製品を代表するものではない。]
[0006] したがって、多くの興味は優秀な商業的な実行可能性を持つ、いわゆる第2世代HTSテープで生じてきた。これらのテープは代表的に層構造に依拠し、これは一般に機械的サポートを与えるフレキシブル基板、基板上に横たわる少なくとも1つのバッファ層、バッファ層は任意に複数の膜を含む、バッファ膜の上に横たわるHTS層、および超電導体層の上に横たわる任意のキャップ層、および/またはキャップ層の上におよび/または全体構造の周りに横たわる任意の電気的安定化層を含む。しかしながら今日まで、このような第2世代テープ、およびこのようなテープを組み込んでいる装置の十分な商業化に先立って、数多くの工学的および製造上の挑戦が続いている。]
[0007] 複数層の超電導物品の形成により引き起こされる障害に加えて、ある応用におけるこのような超電導物品の利用は特有の障害を引き起こし得る。特に、まだまだ増大する電力消費に鑑み、故障電流リミッタ(FCL)等の構成要素における超電導物品の利用は、好ましいものである。しかしながら、長い導体における超電導物品の使用と異なり、故障電流リミッタ(FCL)装置における多層化超電導物品の利用は、特有の要件を持つ。このような物品は、増大する電力需要を処理する能力を持つべきであり、かつまた、システムにおける厳しい変化を、向上した応答時間、性能、および耐性をもって処理することができるべきであろう。]
先行技術

[0008] 米国特許第6,190,752号明細書]
[0009] 第1の側面によれば、故障電流リミッタ(FCL)物品は、超電導テープセグメントを含んで与えられる。超電導テープセグメントは、基板、基板上に横たわるバッファ層、およびバッファ層上に横たわる高温超電導(HTS)層を含み、かつまた、該超電導テープセグメントが、連続的であり、かつ複数の巻き線を含むメアンダーパスを形成するように、超電導層上に横たわるキャップ層、及び/又はキャップ層の上に又は全体構造の周りに横たわる任意の電気的安定化層を含み得る。故障電流リミッタ物品はまた、超電導テープセグメントに電気的に接続された分路回路を含む。]
[0010] もう1つの側面によれば、故障電流リミッタ(FCL)物品は、ハウジング、ハウジングから伸びるブッシング、およびブッシングに電気的に接続されたハウジング内にあるマトリクスアセンブリ、該マトリクスアセンブリは少なくとも1つの超電導故障電流リミッタアセンブリよりなる、を含む。超電導テープセグメントは、基板テープ、基板の上に横たわるバッファ層、及びバッファ層の上に横たわる高温超電導(HTS)層を含み、かつまた、超電導層の上に横たわるキャップ層、及び/又はキャップ層の上に又は全体構造の周りに横たわる任意の電気的安定化層を含み、ここで、該超電導テープセグメントは連続的であり、かつ複数の巻き線を持つメアンダーパスを形成する。該物品はまた、超電導テープセグメントに電気的に接続された分路回路を含む。]
[0011] もう1つの側面によれば、故障電流リミッタ(FCL)物品は、主平面を定義する主表面を持つベース、及びベースを覆ってその側面上に垂れ下がる超電導テープセグメントを含み、超電導テープセグメントの対向する主表面のうちの1つに正接である平面が、前記ベースの主平面に実質的に垂直であるように設けられる。該超電導テープセグメントは、基板、基板の上に横たわるバッファ層、およびバッファ層上に横たわる高温超電導(HTS)層を含み、かつまた、前記超電導層の上に横たわるキャップ層、及び/又は前記キャップ層の上に又は全体構造の周りに横たわる任意の電気的安定化層を含み、ここで、該超電導テープセグメントは連続的であり、かつ複数の巻き線を含むメアンダーパスを形成する。該物品はまた、前記超電導テープセグメントに接続された複数の電気的コンタクトを含む分路回路を含み、ここで、分路回路、及び超電導テープセグメントは、非超電導状態での、前記超電導テープセグメントのインピーダンスと前記分路回路のインピーダンス間の約5:1より小さくないインピーダンス比を持つ。]
[0012] 本開示は、以下の図面を参照することによりよく理解され、その数多くの特徴および利点は、当業者にとって明らかとされるであろう。]
図面の簡単な説明

[0013] 図1は、1つの実施形態による超電導物品の一般化された構造を示す斜視図である。
図2は、1つの実施形態によるメアンダーパス設計、及び並列接続された分路コイルを持つ超電導テープセグメントの図を示す。
図3は、1つの実施形態によるメアンダーパス設計、及び並列接続された分路コイルを持つ超電導テープセグメントの図を示す。
図4は、1つの実施形態によるコンタクトポイントの近くで局所テープ回転を持つメアンダーパス設計、及び並列分路回路を持つ超電導テープセグメントの図を示す。
図5は、1つの実施形態によるメアンダーパス設計、及び並列分路回路を持つ超電導テープセグメントの側面図を示す。
図6は、1つの実施形態によるメアンダーパス設計に構成された多数超電導テープセグメントの斜視図を示す。
図7は、1つの実施形態によるFCL物品を図示する。
図8は、1つの実施形態による電力グリッドにおけるFCL物品の配置を図示する。
図9は、1つの実施形態による電力グリッドにおけるFCL物品の配置を図示する。
図10は、1つの実施形態による電力グリッドにおけるFCL物品の配置を図示する。
図11は、4つのFCLテストサンプルについての電流対時間のプロットを図示する。
図12は、4つのFCLテストサンプルについてのエネルギー対時間のプロットを示す。] 図1 図10 図11 図12 図2 図3 図4 図5 図6 図7
[0014] 異なる図面における同じ参照の使用は、同様の、又は、同じ項目を示す。]
実施例

[0015] 好ましい実施形態の説明
図1に戻って、本発明の1つの実施形態による、超電導物品100の一般化された層化構造が描かれている。超電導物品は、基板10、基板10の上に横たわるバッファ層12、超電導層14、それにつづく代表的には貴金属よりなるキャップ層16、および代表的には銅等の非貴金属よりなる安定化層18を含む。バッファ層12はいくつかの異なる膜より構成される。安定化層18は、超電導物品100の周囲の周りに伸び、これによりそれを完全にすっぽり包む。] 図1
[0016] 基板10は、一般に金属に基づくものであり、かつ代表的に少なくとも2つの金属元素の合金である。特に、適切な基板材料は公知のHastelloy(登録商標)またはInconel(登録商標)グループ合金等のニッケルベースの金属合金を含む。これらの合金は、膨張係数、引っ張り強度、降伏強度、および伸長を含む、所望のクリープな、化学的および機械的特性を持つ傾向がある。これらの金属は、一般にスプールドテープの形で商業的に利用可能であり、代表的にリールツーリールテープ処理を利用する超電導テープの製造に特に適している。]
[0017] 基板10は、代表的に高い寸法比を持つテープ状の形状をしている。ここで用いられるように、用語“寸法比”は基板またはテープの長さの、次の長さ寸法、すなわち基板又はテープの幅に対する比を記すのに用いられる。例えば、テープの幅は一般に約0.1から約10.0cmのオーダーであり、かつテープの長さは代表的に少なくとも約0.1mであり、最も代表的には約5.0mより大きい。実際、基板10を含む超電導体テープは100m又はそれ以上のオーダーの長さをもつであろう。したがって、基板は10より小さくない、102より小さくない、あるいは103よりさえ小さくないオーダーのかなり高い寸法比を持ち得る。ある実施形態は104およびそれより高い寸法比を持ち、より長い。]
[0018] 1つの実施形態において、基板は超電導テープの構成層の続いて起こる堆積のために望ましい表面特性を持つように処理される。例えば、表面は所望の平坦さおよび表面粗さを持つように研磨される。さらに、基板は、公知のRABiTS(roll assisted biaxially textured substrate)技術等により、技術において理解されるように2軸テキスチャーされるように扱われることができる、ただし、ここでの実施形態は代表的に、上記した商業的に利用可能なニッケルベースのテープのように、テキスチャーされていない、多結晶基板を利用する。]
[0019] バッファ層12に戻って、バッファ層は単一層であってよく、あるいはより共通に数枚の膜からなってもよい。最も代表的に、バッファ層は、一般に膜の面内および面外の両方の結晶軸に沿って整列された結晶性テキスチャーを持つ2軸テキスチャー膜を含む。このような2軸テキスチャーはIBADで達成することができる。技術において理解されるように、IBADは、優れた超電導特性のための望ましい結晶学的方位を持つ超電導層のつづいての形成のために適切にテキスチャーされたバッファ層を形成するのに有利に用いられる技術である、イオンビームアシスティッドデポジションの頭字語である。酸化マグネシウムはIBAD膜のための選択の代表的な材料であり、かつ約5から約50ナノメーター等、約1から約500ナノメーターのオーダーであり得る。一般に、IBAD膜は、米国特許第6,190,752号明細書、参照によりここに組み入れられる、で定義され、記述された岩塩状結晶構造を持つ。]
[0020] バッファ層は、IBAD膜および基板に直接接触し、かつ両者間に置かれるよう設けられるバリア膜等の付加的な膜を含むことができる。この点に関し、バリヤ膜は、イットリア等の酸化物により有利に形成することができ、かつ基板をIBAD膜から絶縁するように機能する。バリア膜はまた、窒化シリコン等の非酸化物により形成することもできる。バリア膜の堆積のための適切な技術は、化学気相成長、及びスパッタリングを含む物理気相成長を含む。バリア膜の代表的な厚さは、約1から約200ナノメーターの範囲内にある。またさらに、バリヤ層はまた、IBAD膜上に形成されたエピタキシャル成長膜をも含むことができる。この文脈において、エピタキシャル成長膜は、IBAD膜の厚さを増大するのに有効であり、かつ、MgOまたは他の交換可能な材料等のIBAD層に用いられたのと原則的に同じ材料よりなるのが望ましい。]
[0021] MgOベースのIBAD膜および/またはエピタキシャル膜を用いる実施形態において、MgO材料と超電導層の材料との間には格子不整合が存在する。したがって、バッファ層はもう1つのバッファ膜を含むことができ、これは特に、前記超電導層とその下にあるIBAD膜及び/またはエピタキシャル膜との間の格子定数の不整合を低減するように用いられている。このバッファ膜は、YSZ(イットリア安定化ジルコニア)ストロンチウムルテネート、ランタン(ランタナム)マンガネート、かつ一般に、ぺロブスカイト構造セラミック材料等の材料により形成することができる。 バッファ膜は、種々の物理気相堆積技術により堆積することができる。]
[0022] 上記は原則的に、IBAD等のテキスチャープロセスによりバッファスタック(層)内の2軸テキスチャーされた膜の実行に焦点を置いたものであるが、代替的に、基板表面自体を2軸テキスチャーすることができる。この場合、該バッファ層は一般に、テキスチャーされた基板上に、該バッファ層内での2軸テキスチャーを維持するようにエピタキシャル成長される。2軸テキスチャーされた基板を形成するための1つのプロセスは、技術においてRABiTS(roll assisted biaxially textured substrates)として知られている公知の技術であり、一般に技術において理解されている。]
[0023] 超電導層14は一般に高温超電導体(HTS)層の形をしている。HTS材料は代表的に液体窒素の温度、77K以上で超電導特性を示す高温超電導材料のいずれかから選択される。このような材料は、たとえば、YBa2Cu3O7-x,Bi2Sr2CaCu2Oz,Bi2Sr2Ca2Cu3O10+y,Tl2Ba2Ca2Cu3O10+y,およびHgBa2Ca2Cu3O8+yを含み得る。1つのクラスの材料は、REBa2Cu3O7-xを含み、ここで、REは希土類元素、または希土類元素の結合である。上記の中で、YBa2Cu3O7-x、これはまたYBCOとも言われる、が有利に用いられる。YBCOは、希土類材料、たとえばサマリウム、等のドーパントの付加をもって、あるいはその付加無しで使用し得る。超電導層14は、厚膜及び薄膜形成技術を含む、種々の技術の任意の1つにより形成することができる。好ましくは、パルスレーザー堆積(PLD)等の薄膜物理気相成長技術を高堆積率のために用い得、あるいは化学気相成長技術を低コストおよびより大きい表面領域処理のために用い得る。代表的に超電導性層は、該超電導性層14と関連した所望のアンペアレートを得るために、約0.1から約30ミクロン、最も代表的には約1から約5ミクロン等の、約0.5から約20ミクロンのオーダーの厚さを持つ。]
[0024] 前記超電導物品はまた、キャップ層16および安定化層18を含み、これらは一般に、低抵抗インタフェースを与えるために、および実際の使用における超電導体のバーンアウトの防止を助ける電気的安定化のために含まれている。より特定的には、層16および18は、冷却が失敗したときあるいは臨界電流密度を超えたときに、該超電導体に沿っての電荷の連続した流れを助け、かつ、超電導層は、超電導状態から移行し、抵抗性になる。代表的に、貴金属は、安定化層と超電導層14との間の不要な相互作用を防止するために、キャップ層16に用いられる。代表的な貴金属は、金、銀、プラチナ、およびパラジウムを含む。銀は代表的にそのコストおよび一般的なアクセスのしやすさのために用いられる。キャップ層16は代表的に、安定化層18から超電導層14への構成要素の不要な拡散を防ぐに十分な厚さに形成されるが、しかしこれは、コスト(生の材料および処理コスト)面より一般に薄く形成される。DCマグネトロンスパッタリング等の物理気相成長を含む種々の技術を、キャップ層16の堆積に用いることができる。]
[0025] 安定化層18は、一般に、超電導層14の上に横たわるように、かつ特に図1に示される特定の実施形態においては、キャップ層16の上に横たわり、かつ直接接触するように、組み入れられる。安定化層18は、厳格な環境条件および超電導性クエンチに対する安定性を向上する保護/分路層として機能する。この層は一般に稠密であり、かつ熱的におよび電気的に伝導性であり、かつ超電導層の失敗の場合には、あるいはもし超電導層の臨界電流を超えたときは、電流をバイパスするように機能する。それは、プリフォームされた銅ストリップを超電導テープ上に積層することによる、半田のような中間のボンデイング材料を用いることによる、等、種々の厚膜および薄膜形成技術の任意の1つにより形成することができる。他の技術は、代表的に、蒸着またはスパッタリングである物理気相成長ばかりでなく、エレクトレスプレーティング、等のウェットケミカルプロセス、およびエレクトロプレーティング、に焦点を当ててきた。この点に関し、キャップ層16はその上に銅を堆積するためのシード層として機能することができる。顕著には、キャップ層16および安定化層18は、種々の実施形態に従って以下に記述されるように、順序を変えてもよく、あるいは使用しなくてもよい。] 図1
[0026] 図2を参照して、メアンダーパス設計を持つ連続的な超電導テープセグメント201を含むFCL物品200の図が図示されている。顕著には、超電導テープセグメント201は、代表的にジョイントまたはブリッジを利用することなく、巻き線の長さに沿って連続的であるHTS材料の連続的な層を含む。FCL物品200は、ベース219、他の中でも203,204,205,206,207,209、210,211,および213を含む複数のコンタクト、第1の電気的分路回路215、および第2の電気的分路回路217を含む。前記メアンダーパスは、複数の巻き線を持ち、そのおのおのは超電導テープセグメント201の直線部分および曲がりを含む。1つの実施形態によれば、超電導テープセグメント201の1つの巻き線は、たとえば、第1のコンタクト203の周りに伸び、第2のコンタクト204の周りに伸び、かつその後、第3のコンタクト206の周りに伸びるテープセグメントのパスを含むことができる。ここで用いられるように、1つの巻き線は、一般にそこから超電導テープセグメント201が始まり、かつコンタクトに関して同じ方向に戻る任意のパスを含む。より詳細には、巻き線は、正弦波の文脈で定義されるように全円により表される。1つの巻きサイクルは点Aと点Bとの間に伸びるように示される。第2の巻きサイクルは点Cと点Dとの間に伸びるように示される。] 図2
[0027] さらに超電導テープセグメント201を参照して、1つの超電導テープセグメントは図2に示されるが、他の実施形態は複数の超電導テープセグメントを用いることが理解されるであろう。たとえば、多数の超電導テープセグメントが用いられ、かつジョイントまたはブリッジを用いて相互に結合され得る。これらのジョイントは機械的かつ電気的結合装置であり、これらは複数の超電導テープセグメントを直列に結合するのに特に有用であろう。あるいは、複数の超電導テープセグメントは、たとえば電気的に結合されて並列回路を構成する、のように並列構成で結合され得る。] 図2
[0028] 一般に、超電導テープセグメント201は、たとえば約5mより小さくない、または約10mより小さくない、またさらには、約1000mよりさえ小さくない、のように、約0.1mより小さくない長さを持つ。代表的に、超電導テープセグメント201は、約2kmより大きくない長さを持つ。]
[0029] 超電導テープセグメント201は、一般に約0.1cmより小さくない幅を持つ。しかしながら、他の実施形態は、幅が約1cmより小さくない、またさらには約10cmより小さくないのような、より広い超電導テープセグメントを利用できる。また、超電導テープセグメントの幅は、一般に約30cmより大きくない。]
[0030] 一般に、超電導テープセグメント201は、約100ミクロンより小さくない、またさらには約500ミクロンより小さくないのような約20ミクロンより小さくない平均厚みを持つことができる。代表的に、超電導テープセグメント201の平均厚みは、約50ミクロンと約200ミクロンとの間、のような約20ミクロンと約500ミクロンとの間の範囲内にある。]
[0031] 図2に図示されるように、超電導テープセグメント201は、複数のコンタクトの回りに複数のメアンダーパス設計にて伸びている。1つの実施形態によれば、超電導テープセグメント201は懸架されている。一般に、超電導テープセグメント201は、冷却媒体への露出を可能とするようコンタクト間で懸架される。特定の図示された実施形態において、超電導テープセグメント201は、ベース219上でコンタクト間で懸架されている。特定の実施形態によれば、超電導テープセグメント201は、前記テープセグメントの上面および底面に正接となる平面が前記ベース219の主面に垂直、または実質的に垂直であるように、その側部が前記ベース219上に懸架されている。1つの実施形態によれば、超電導テープセグメント201の全長の約75%より小さくない部分が、ベース219の上方で懸架されている。もう1つの実施形態においては、前記テープセグメントの全長の約90%より小さくないものが、懸架されており、さらに他の実施形態においては、本質的に超電導テープセグメント201の全長が、ベース219の上方で懸架されている。] 図2
[0032] もう1つの実施形態によれば、超電導テープセグメント201の全長が、前記ベースの上方の、約0.5cmより小さくない、またさらには、約2cmより小さくない、のような約0.25cmより小さくない平均高さで懸架される。またもう1つの実施形態によれば、前記超電導テープセグメント201の部分は、前記ベース219の上方の異なる高さで懸架される。たとえば、超電導テープセグメントの全長の半分は1つの高さで懸架され、前記超電導テープセグメントの他の半分は異なる高さで懸架される。超電導テープセグメントの部分は等しい部分である必要はなく、かつ、そのおのおのは前記ベース上の異なる高さで懸架される、多数の部分があってよいことは理解されるであろう。]
[0033] さらに、懸架されたテープ設計を参照して、超電導テープセグメント201は、その側面上に懸架され、かつ冷却媒体に露出される。このような設計は、テープセグメントの急速な冷却、およびFCL装置の性能の向上を可能とする。したがって、1つの実施形態においては、超電導テープセグメント201の全外部表面領域の約50%より小さくない部分が冷却媒体に露出されている。もう1つの実施形態においては、超電導テープ201の全外部表面領域の約90%より小さくない部分、またさらには、約98%より小さくない部分等の、約75%より小さくない部分が冷却媒体に露出される。]
[0034] 1つの実施形態によれば、超電導テープセグメント201のメアンダーパス設計は、本質的に非誘導性の設計であり、これはFCL物品の通常の超電導動作の間の付加的なインピーダンスの低減を可能とする。一般に、本質的な非誘導性の設計は、約20マイクロヘンリーより大きくない、かついくつかの実施形態においては、約10マイクロヘンリーより大きくない、あるいはさらに約1.0マイクロヘンリーより大きくないインダクタンスを持つ。図2に示された実施形態によれば、超電導テープセグメントは、前記メアンダーパスに沿ってそれ自身をオーバーラップしない。さらに、超電導テープセグメントは非線形に進行するが、しかしテープ端は第1のコンタクト203から最終コンタクト205まで距離“d”だけ離れている。電圧端子(VinおよびVout)間の距離は、安定化されたFCL構造を可能とする。] 図2
[0035] 一般に、FCL物品のメアンダーパス設計は、2つの電気的コンタクトより小さくない、かつ代表的には6つの電気的コンタクトより小さくない、かついくらかの実施形態においては10個の電気的コンタクトより少なくない、ものの周りを巻回する超電導テープセグメントの巻き線を含む。図示されているように、メアンダーパス設計は、超電導テープセグメントの巻き線が、15またはさらに20のコンタクトより少なくないものを包み回るように、より多くのコンタクトを組み込むことができる。コンタクトの数はまた、メアンダーパス設計、および超電導テープセグメントの長さに依存することも理解されるであろう。]
[0036] さらにFCL物品の設計を参照して、コンタクトは移動可能である。1つの実施形態において、コンタクトの一部は、超電導テープセグメント201の移動を可能とする、かつテープセグメントに対するストレスを、特に温度変化での伸張および収縮によるテープに対するストレスを低減するベースに対してばね負荷されており、あるいはバイアスされている。さらに、コンタクトの一部、またはコンタクトのすべては、超電導テープセグメント201と係合する、かつこれを位置させるためのチャネルを含むことができる。チャネルは、超電導テープセグメントの巻き線をコンタクトの周りに巻回させること、巻き線を次のコンタクトに向けること、および非誘導性のメアンダーパス設計を維持することを可能とする。]
[0037] FCL物品のコンタクトをさらに参照して、1つの実施形態によれば、該コンタクトの一部は電気的コンタクトであり、一方、残りのコンタクトは機械的である。一般に、電気的コンタクトであるコンタクトは、電気的に導電性の材料によりつくられ、あるいは電気的に導電性のコーティングを持っている。電気的コンタクトに適切な材料は、金、銀等の貴金属、銅等の非貴金属、またはそれらの合金を含む。図2に図示された実施形態を参照して、コンタクト203、210および205は、特にこれらのコンタクトは、前記FCL装置をVinおよびVoutにより証明されるような外部の電気装置に電気的に結合するばかりでなく、第1の分路回路215および第2の分路回路217を互いにおよび前記超電導テープセグメント201に電気的に結合させるものとして、電気的コンタクトであることが適している。さらに、前記FCL装置の他のコンタクトは電気的なコンタクトであり得、かつ1つの実施形態によれば、すべての他のコンタクトは電気的なコンタクトである。またもう1つの実施形態においては、すべてのコンタクトは電気的コンタクトである。] 図2
[0038] 超電導テープセグメント201およびコンタクトの設計を参照して、メアンダーパスの設計は、電気的なコンタクトに電気的に結合する超電導テープセグメントの表面(すなわち、上または底表面)を決定することができる。一般に、超電導テープセグメント201は、基板により定義される底表面、および前記テープセグメントの前記底表面と対向する表面により定義される上表面を持ち、これらは、たとえば、HTS層、キャップ層、または安定化層等の、多くの異なる層のうちの1つを含み得る。したがって、超電導テープセグメントの上表面の一部または底表面の一部は、電気的コンタクトと接触することが望ましい。1つの実施形態においては、超電導テープセグメントの底表面の部分および上表面の部分は、電気的コンタクトに結合することができる。もう1つの実施形態によれば、超電導テープセグメント201の上表面の部分は、すべてのコンタクトの周りに伸びる。もう1つの実施形態において、超電導テープセグメント201の底表面の部分は、すべての電気的コンタクトの周りに伸びる。]
[0039] たとえば、図2に示されるメアンダーパス設計を参照して、超電導テープセグメントの上表面の一部は、コンタクト203の回りに伸び、したがってそのとき、超電導テープセグメントの背面の一部は、コンタクト204の回りに伸び、かつ同様に、前記上表面の一部はコンタクト206の回りに伸びる。コンタクト203および206は、電気的コンタクトであり、かつこのように、超電導テープセグメントの上端部分は、電気的コンタクト203および206の周りに伸び、かつこれらに結合されている。また、コンタクト204は電気的コンタクトであり、かつ、超電導テープセグメント201の底表面の一部は電気的コンタクト204に電気的に結合されている。メアンダーパス設計、超電導テープセグメントの方位、および電気的コンタクトの数および配置は、テープセグメントを電気的コンタクトと電気的に結合させる、超電導テープセグメントのそれらの表面を、決定することができる。] 図2
[0040] FCL装置はまた、超電導テープセグメントが非超電導状態、これは代表的に特定のしきい値以上の故障電流を含む、にあるときに、電流の流れを可能とする分路回路を含む。1つの実施形態によれば、FCL物品は1つの分路回路を含む。図2に示された実施形態に関して、第1の分路回路215および第2の分路回路217は、超電導テープセグメント201および、コンタクト203および205、これらは一般に電気的コンタクトである、に結合されている。分路回路215および217は、電気的コンタクトを通して超電導テープセグメント201に電気的に結合されている、あるいは誘導的に結合されている。図示されたように、第1の分路回路215は、メアンダーパスの一部をスパンし、かつ電気的コンタクト203および210に電気的に結合されている。第2の分路回路217はメアンダーパスの一部をスパンし、かつ電気的コンタクト210および205に電気的に結合されている。顕著には、第1および第2の分路回路215および217は距離“d”をスパンし、かつ失敗状態の間の電流の流れのために、VinとVout間に代替的な電流フローパスを与える。さらに、第1および第2の分路回路215および217は超電導テープセグメント201の損傷または失敗の場合に、代替的な電流フローパスを可能とし、装置の性能を保証する。] 図2
[0041] したがって、FCL装置は、VinとVout間のメアンダーパスの全距離をスパンする単一のまたは複数の分岐回路を含み得る。図2に示されるように、第1および第2の分路回路215および217のおのおのは、電気的接触を行うことなく多くのコンタクトをスパンする。より多くの分路回路を含むことができ、かつ1つの実施形態によれば、FCL装置は、電気的コンタクトのおのおのに接触し、損傷または失敗の場合にテープへの代替的な電流フローパスを最大にする分路回路を組み込んでいる。1つの実施形態によれば、該分路回路は少なくとも1つのインピーダンス要素(たとえば、抵抗および/またはインダクタ)を、かつより代表的には、VinとVout間のメアンダーパスの距離をスパンする複数のインピーダンス要素を、含む。1つの実施形態において、複数のインピーダンス要素は互いに直列に接続され得る。直列に接続されたインピーダンス要素の数は、一般に、約5個より小さくない、あるいは約10個よりさえ小さくない、のように約2個より多い。あるいは、直列のインピーダンス要素は、電気的コンタクトと直列に接続され得る。1つの特定の実施形態において、直列のインピーダンス要素は前記電気的コンタクトのおのおのに結合される。] 図2
[0042] 一般に、インピーダンス要素は、前記分路回路が、各インピーダンス要素がある長さの超電導テープセグメントを保護するようにスパンするように、該テープの長さに基づく特定のインピーダンスを持つように選択される。このように、代表的に分路回路は保護されるテープのメーターあたり約0.1ミリオームより小さくないインピーダンスを持つインピーダンス要素を含む。他の実施形態は、インピーダンス要素が、保護されるテープのメーターあたり約1ミリオームより小さくない、あるいは保護されるテープのメーターあたり約5ミリオームより小さくない、あるいは保護されるテープのメーターあたり約10ミリオームより小さくない、あるいはさらに、保護されるテープのメーターあたり約1.0オームまでの値を持つように、保護されるテープのメーターあたりのより大きいインピーダンスを利用する。]
[0043] ここでの分路回路は、代表的に超電導テープセグメントの長さあたり特定の数のインピーダンス要素を組み込んでいる。たとえば、分路回路は、超電導テープセグメントの約5メーターより小さくない部分につき、1つのインピーダンス要素を組み込むことができる。他の実施形態は、保護される超電導テープセグメントの約10メーターより小さくない部分につき1つのインピーダンス要素、あるいはさらに、保護される超電導テープセグメントの約20メーターより小さくない部分につき1つのインピーダンス要素、等のより少ない要素を用いることができる。またここでの実施形態は、代表的に保護される超電導テープの100メーターにつき少なくとも1つのインピーダンス要素を用いる。]
[0044] 図3を参照して、代替的なメアンダーパス設計を持つ超伝導テープセグメント301を含むFCL物品300の図が、示される。該FCL物品は、ベース319、(他の中でも)303,304,305,306,307,309,310,311,および313(を含む)複数のコンタクト、および第1の電気的分路回路315および第2の電気的分路回路317を含む。この実施形態によれば、巻き線は超電導テープセグメント301の直線部分および曲がりを含むが、しかしながら巻き線は互いに重なり合う。この図示された実施形態によれば、超電導テープセグメントの1つの巻き線は、たとえば、該テープセグメントの、第1のコンタクト303から第2のコンタクト304へのパスであって、かつそののち第3のコンタクト306の周りに伸びるもの、を含む。顕著には、この特定のメアンダーパス設計においては、超電導テープセグメント301は、それが各巻き線を通って進むとき、それ自身とオーバーラップする。したがって、超電導テープセグメント301の異なる部分は、前記ベース上の異なる高さに位置しており、オーバーラップするパターンを可能とする。たとえば、超電導テープセグメントのコンタクト303とコンタクト304間に伸びる部分は、超電導テープセグメントのコンタクト304とコンタクト306間に伸びる部分とオーバーラップ、またはアンダーラップする。] 図3
[0045] 図4を参照して、代替的なメアンダーパス設計をもち、複数の巻き線を持つ超電導テープセグメント401を含むFCL物品400が、図示されている。図示されるように、FCL物品400は、ベース416の上に横たわる、402から410のような複数のコンタクトを含む。上記でも記述したように、このようなコンタクト402−410は、機械的な、または電気的なコンタクトを含み得るが、この特定の実施形態では、コンタクト402−410は超電導テープセグメント401を転回させるための機械的なコンタクトである。以前に記述された実施形態と異なり、超電導テープセグメント401は、そこでは、超電導テープセグメント401がチルトされる、または回転される回転領域411および412を含む。図示された実施形態によれば、回転領域411および412は、特に超電導テープセグメント401の直線部分に沿って特定的に局所化されている。このような回転領域411および412は、超電導テープセグメント401の電気的コンタクト415および417への結合を可能とし、これは次に、超電導テープセグメント401を分路回路413に結合させる。顕著には、回転領域411および412内で、超電導テープセグメント401は、少なくとも超電導テープセグメント401の一部がベース416に平行であり、かつ電気的コンタクト415および417のコンタクト表面に対してフラットであるように回転せられる。1つの実施形態によれば、超電導テープセグメントの多数の平行巻き線がこのような実施形態の中に組み入れられ、それらのすべてが電気的コンタクトへの接続を可能とするよう回転せられる、ことが理解されるであろう。] 図4
[0046] 回転領域411および412内での超電導テープセグメント401は、超電導テープセグメント401の長さ方向に伸びる縦軸の周りを回転可能である。代表的に、回転領域411および412内での超電導テープセグメント401の回転の量は、該テープの他の非回転部分に対して約15°より小さくない。他の実施形態は、30°より小さくない、あるいは45°より小さくない、あるいは60°さえより小さくない、より大きい回転量を利用する。また、回転領域411および412内のテープセグメント401の回転量は、代表的に約150°より大きくない。]
[0047] 図5を参照して、代替的な設計をもつFCL物品500が、図示される。該FCL物品500は、直線部分および曲がりを含む複数の巻き線を持つ、少なくとも1つの超電導テープセグメント501を含み、ここで、曲がりは、複数のコンタクト503−515の周りでなされている。図示された実施形態によれば、超電導テープセグメント501はコンタクト503−515間で懸架されており、超電導テープセグメント501の、極低温液体またはガス等の冷却材への有効な露出を可能としている。顕著には、FCL物品500はベースを含まず、むしろコンタクト503から515は、構造523および525により支持されている。FCL物品500は、さらに、超電導テープセグメント501を該構造内に保持するためのエンドプレート517および519を、含む。] 図5
[0048] さらに、プレート525は、構造523と525との間に位置しており、超電導テープセグメント501がその中を通過するための開口を収容する。プレート525内の開口は、超電導テープセグメントの巻き線を、互いに対して該巻き線のおのおのが隣接する巻き線部分と接触して電気的な干渉を生じないように安定化させることを助ける。]
[0049] 図示された実施形態はさらに、電気的コンタクト527および528を通して超電導テープセグメント501に電気的に結合された分路回路521を含む。他の実施形態は、上記したように機械的および電気的コンタクトの結合を利用して超電導テープセグメントのパスを変更することができるが、この特定の実施形態によれば、電気的コンタクト527および528は、超電導テープセグメント501と分路回路521との有効な電気的結合のためにコンタクト503−515から離れて位置している。このように、この特定の実施形態によれば、超電導テープセグメント501は、電気的コンタクト527および528の周りを、包み込まない。このような実施形態は、多数の超電導テープセグメントを組み込むことができることが、理解されるであろう。]
[0050] 図6は、FCL物品500と同様の構成を持つFCL物品600の斜視図であるが、該FCL物品600は、多数の超電導テープセグメント601、602、603および604を持っており、そのおのおのは直線部分および複数のコンタクトの周りに展開する曲がりよりなる複数の巻き線を持つ。図示された実施形態によれば、超電導テープセグメント601−604は、超電導テープセグメント601−604のおのおのの直線部分が同じ平面に沿って伸びるように、互いに隣接して位置している。さらに、超電導テープセグメント601−604のおのおのはコンタクトの周りに展開する、かつ互いに隣接している曲がりを持つ。超電導テープセグメント601−604のおのおのは、それらが隣接するテープからある水平距離離れていて、これによりテープ間電磁干渉を低減している点を除いて、実質的に同様のパスを持つ。一般に、隣接するテープ間の、隣接するテープ間にある最も近接する水平エッジから測定された、平均水平距離は、約5cmより大きくない。他の実施形態は、隣接するテープ間の平均水平距離が約0.5cmより大きくない、あるいはさらに約0.1cmより大きくない、のように約1cmより大きくない、のようなより近い間隔を利用している。] 図6
[0051] 図7を参照して、ハウジング701、ブッシング703および705、および、複数の超電導FCLアセンブリー708,709、710、および711(708−711)を持つマトリクスアセンブリ707、を含むFCL物品700が、図示されている。特定の実施形態によれば、ハウジング701は、温度および圧力制御され、特に超電導FCLアセンブリーに適した温度を保持するように、極低温に冷却される。上記したように、この温度は、液体窒素または他の液体寒剤により維持することができる。一般に、ブッシング703および705は、外界の電力生成、送電、配電装置に電気的に結合され得るものであり、一方、ハウジング501内では、ブッシング703および705は、超電導FCL アセンブリー708−711を含むマトリクスアセンブリ707に電気的に結合する。超電導FCL アセンブリー708−711が、ここでの実施形態の中で記述された構成要素および設計を組み入れることは理解されるであろう。] 図7
[0052] 図8は、1つの実施形態による、電力グリッド800内に置かれたFCL装置803の模式図を図示する。図示されたように、図式800は、FCL装置803の、“主位置”、すなわち変圧器801と複数の個々の回路を含む配電バス805との間の位置、への配置を含む。顕著には、FCL装置の主位置への配置は、ブレーカーの向上を行うことなく、配電バス805上のすべてのユーザを保護する。] 図8
[0053] もう1つの図式に戻って、図9は、1つの実施形態による、電力グリッド900内へのFCL装置905の配置を示す。図示されるように、該図式は、FCL装置905の、変圧器901、および配電バス903の下流への、しかし、個々の回路907の前への、配置を示す。これは、FCL装置905の“フィーダー位置”での使用を証明し、これは、個々の回路907、および個々の回路907上の能力の低い装置、を保護する。顕著には、フィーダー位置でのFCL装置905は、必ずしも大きい負荷を処理するように装備される必要はないので、より小さい装置であり得る。] 図9
[0054] もう1つの図式に戻って、図10は1つの実施形態による、電力グリッド1000内のFCL装置1005の配置を図示する。図示されるように、該図式は、FCL装置1005の、おのおのは、変圧器1001および1007、および配電バス803および1009を備える2つのサブシステム1013および1015間への、しかし個々の回路1007の前への、配置を示す。これは、FCL装置1005の“バスタイ位置”での使用を証明するものであり、これは、故障電流が、もう1つのサブシステム上の回路と干渉する1つのサブシステム内を伝播することから保護する。] 図10
[0055] FCL装置、および該FCL装置の構成要素、の電気特性を参照して、1つの実施形態においては、超電導テープセグメントは、非超電導状態においてメーターあたり約5オームより大きくない抵抗を持つ。もう1つの実施形態によると、超電導テープセグメントは、非超電導状態において、メーターあたり約1オームより大きくない、あるいはメーターあたり約0.1オームより大きくない、等の、メーターあたり約2オームより大きくない抵抗率を持つ。]
[0056] 顕著には、FCL物品は、該物品が非超電導状態にあるときの、超電導テープセグメントと分路回路との間のインピーダンスの示しであるインピーダンス比を持つ。一般に、インピーダンス比は、物品が非電導状態にあるとき、超電導テープセグメントと分路回路との間で約1:1より小さくはなく、かつより代表的には約3:1より小さくはない。1つの実施形態によれば、該インピーダンス比は、約10:1より小さくはなく、あるいは約30:1より小さくはなく、あるいは約100:1よりさえ小さくはない。特定の実施形態によれば、FCL装置の該インピーダンス比は、5:1と50:1との間の範囲内にある。]
[0057] さらに該物品の特性を参照して、1つの実施形態によれば、超電導テープセグメントは、約50ミクロより大きくない平均厚みを持つキャップ層を含む。もう1つの実施形態によれば、HTS層の上に横たわるキャップ層は、約5ミクロンより大きくない、あるいはまた、約0.05ミクロン大きくない、等の約25ミクロンより大きくない平均厚みを持つ。1つの特定の実施形態において、超電導テープセグメントは、本質的にHTS層の上に横たわるキャップ層を持たない。]
[0058] もう1つの実施形態によれば、超電導テープは、(キャップ層が設けられている実施形態においては) キャップ層の上に横たわる、あるいはそうでなければ、HTS層の上に直接横たわる安定化層、その安定化層の平均厚さは約1000ミクロンより大きくない、を含むことができる。もう1つの実施形態によれば、安定化層は、約50ミクロンより大きくない、あるいは約2ミクロンよりさえ大きくない等の、約500ミクロンより大きくない平均厚さを持つ。また特定の実施形態においては、超電導テープセグメントは、本質的に安定化層を持たない。]
[0059] さらに、超電導テープセグメントの設計を参照して、基板の厚みは、所望の電気特性を与えるよう選択することができる。1つの実施形態によれば、基板の平均厚みは、約50ミクロンより小さくない、あるいはさらに約100ミクロンより小さくない、等のように、約10ミクロンより小さくない。また、もう1つの実施形態においては、基板の平均厚さは、約1000ミクロンより小さくない、のように、約200ミクロンより小さくない。特定の実施形態において、基板の平均厚さは、約150ミクロンと250ミクロンとの間等の、約100ミクロンと約300ミクロンとの間の範囲内にある。]
[0060] さらに、FCL装置の特性を参照して、一般に、超電導状態にある超電導テープセグメントの臨界電流容量は、テープの幅寸法あたりの電流の示しである。このように、代表的に臨界電流容量は、テープ幅あたり約5A/cmより小さくない。もう1つの実施形態においては、臨界電流容量は、テープ幅あたり約50A/cmより小さくない、テープ幅あたり約100A/cmより小さくない、あるいはテープ幅あたり約1000A/cmさえより小さくない、のようにより大きいものである。特定の実施形態は、テープ幅あたり約10A/cmと、テープ幅あたり約1000A/cmとの間の範囲内の臨界電流容量、かつより特定的には、テープ幅あたり約100A/cmと、テープ幅あたり約750A/cmとの間の範囲内の臨界電流容量を利用することができる。もし、電流がこの臨界電流容量を超えれば、超電導導体は、その超電導状態から“通常抵抗性状態”に移行する。この超電導状態から通常抵抗性状態への移行は“クエンチング”といわれる。“クエンチング”は、動作温度、外部磁界、又は電流レベルの3つの要因の任意の1つ、または任意の結合が、それらの対応する臨界レベルを超えるときに、起こり得る。]
[0061] 1つの実施形態によれば、ここで与えられるFCL装置の主なクエンチングのトリガーは、クエンチ電流である。代表的に、クエンチ電流が低ければ低いほど、装置は故障電流に対してより応答性がある。クエンチ電流は、超電導テープセグメントの臨界電流容量の測定された整数倍であり得る。たとえば、1つの実施形態において、FCLは、臨界電流容量の約20倍より大きくないクエンチ電流が、超電導テープセグメントのクエンチングを生ずるのに十分であるような感度を持つ。他の実施形態においては、クエンチ電流は、超電導テープセグメントの臨界電流容量の約10倍より大きくない、等の、より低いものであり得る。他の実施形態は、超電導テープセグメントの臨界電流容量の約5倍より大きくない、あるいは超電導テープセグメントの約2.5倍より大きくない、クエンチ電流を利用する。特定の実施形態によれば、クエンチ電流は臨界電流容量の約1.5倍より大きくない。]
[0062] 一般に、クエンチ電流が低ければ低いほど、FCL物品の応答時間はより早く、これは下流の電気装置の改善された保護を確実にする。そのときのFCL物品の応答時間は、超電導テープセグメントをクエンチさせるのに要する時間である。一般に、平均応答時間は一周波数サイクルの半分より小さい。1つの実施形態によれば、平均応答時間は約2msより大きくない、あるいは、約0.5msよりさえ大きくない等、約10msより大きくない。また、もう1つの実施形態においては、応答時間は約0.1msより大きくない。より特定的な実施形態において、平均応答時間は、約0.1msと約5msとの間の範囲内にあり得る。]
[0063] さらに、FCL物品の特徴を参照して、図11は、ここでの実施形態に従った設計を取り入れた並列分路回路と接続された4つの超電導テープセグメントテストサンプルについての電流対時間のプロットを示す。予測的な故障電流3000Aが4つの超伝導テープセグメントテストサンプル(サンプル1−4)に印加される。FCL物品は、10マイクロオーム誘導性結合分路回路を含む。前記4つのサンプルのおのおのは、同じ層、顕著には、基板、バッファ層、HTS層およびキャップ層を含む。しかしながら、4つのサンプルのおのおのキャップ層の厚さは、変化している。サンプル1は、1.2ミクロンの厚みを持つ銀よりなるキャップ層を含む。サンプル2、3、および4は、それぞれ、2.4ミクロン、3.6ミクロン、および4.8ミクロンの厚みを持つキャップ層を含む。図11によれば、サンプル1は故障電流の印加の際の最も低い初期ピーク電流を証明し、一方、サンプル2はより高い初期ピーク電流を与え、サンプル3はサンプル2よりより大きい初期ピーク電流を持ち、かつサンプル4は他のすべてのサンプルより大きい初期ピーク電流を証明する。図示されるように、発振が連続し、かつ時間とともに強度が低下するとき、サンプル1は最も低いピーク電流を証明しつづけ、サンプル4は最も大きいピーク電流を持つ。顕著には、低減された厚みのキャップ層を持つテストサンプルは、失敗条件の下で、電流フローを超電導テープセグメントから分路回路に迂回させる能力を証明する。] 図11
[0064] 図12に戻って、エネルギー対時間のプロットが、同じ4つのテストサンプルについて図示されている。サンプル1−4は、図11にしたがって上記で議論したサンプルと同じものである。サンプルは、サンプルのおのおのが異なる厚さの銀のキャップ層を持つ点を除いて、基板、バッファ層、HTS層、およびキャップ層を含む同じ層化された構造を持ち、同じ条件の下でテストされる。上記で与えられたように、サンプル1−4は、それぞれ、1.2ミクロン、2.4ミクロン、3.6ミクロン、および4.8ミクロンの厚みのキャップ層を持つ。このテストによれば、測定されたエネルギーは、分路回路と並列に故障電流を受けたときの該テストサンプルの熱エネルギーを含む。図示されたように、サンプル1は故障期間中の全エネルギーの最も小さい増加を証明し、一方、サンプル2は故障期間にわたる全エネルギーのより大きい増加を証明する。サンプル3および4は故障期間中の全エネルギーのさらにより大きい増加を証明し、サンプル4は全エネルギーの最も高い増加を持つ。サンプルのエネルギー増加は、並列分路インピーダンスにより決定される超電導テープセグメント内を流れる対応する電流に主によるものである。より低いエネルギーの全増加は、増大した性能、応答時間および回復時間ばかりでなく、耐性および動作寿命の起こりえる増加を持つ装置を可能とする。したがって、図12のプロットは、低減された厚さのキャップ層を持つサンプルはFCL装置のための改善されたエネルギー消費および改善された超電導性を持つテープセグメントを可能とすることを示している。] 図11 図12
[0065] 上記で説明された実施形態によれば、超電導テープセグメントを組み込んでいるFCL物品は、顕著に改善された性能および耐性を持って与えられる。特に、本実施形態は、ユニークな装置設計、非誘導性メアンダーラインパス設計、およびFCL装置のための特定の長い長さの多層化された超電導構造の利用を含む、特徴の結合を記述している。さらに、本実施形態はまた、特徴の上記の結合に、メアンダーラインパスFCL装置における特定の使用のために、超電導テープセグメントの工学された連続的な長さを与えることにより、技術の状態から離れたものを提示している。ここで実施形態において記述されたような、多層化構造の特定の設計は、価値のある改善を与えることが発見された。また、ここでの実施形態において与えられる特徴の結合は、改善された性能、応答時間、回復時間、耐性および動作時間を持つ改善されたFCL装置を可能とすることが発見された。]
[0066] 発明は、特定の実施形態の文脈において図示され、記述されてきたが、種々の変形および置換が本発明の範囲から何らかの方法で離れることなく可能であるので、示された詳細に限定されることが意図されているものではない。たとえば、付加的な、または等価な置換物が、与えられることができ、かつ付加的な、または等価な製造ステップを用いることができる。このように、ここで開示された発明の、さらなる修正および等価物は、通常の実験以上のものを用いることなく、当業者に起こることであり、すべてのこのような修正および等価物は、以下のクレームで定義されるような発明の範囲内にあると信じられる。]
权利要求:

請求項1
以下のものよりなる故障電流制限器:基板、該基板の上に横たわるバッファ層、該バッファ層の上に横たわる高温超電導(HTS)層よりなる超電導テープセグメント、ここで、該超電導テープセグメントは、連続的であるメアンダーパスを形成し、該メアンダーパスは、複数の巻き線を持つ:および前記超電導テープセグメントに電気的に接続された分路回路。
請求項2
請求項1記載のFCL物品において、前記超電導テープセグメントのメアンダーパスは、本質的に非誘導性の電気パスを形成する。
請求項3
請求項1記載のFCL物品において、前記超電導テープセグメントの前記メアンダーパスは、約0.1mより小さくない長さを持つ。
請求項4
請求項1記載のFCL物品において、前記超電導テープセグメントの一部は、コンタクト間に懸架され、かつ冷却媒体に露出されている。
請求項5
請求項1に記載のFCL物品において、各巻き線は、少なくとも1つの曲がり、および1つの直線部分よりなる。
請求項6
請求項5に記載のFCL物品において、前記曲がりの少なくともいくつかは、電気的コンタクトの回りを包む。
請求項7
請求項6に記載のFCL物品において、前記分路回路は、前記電気的コンタクト間に位置し、前記電気的コンタクトに電気的に接続された少なくとも1つのインピーダンス要素よりなる。
請求項8
請求項7に記載のFCL物品において、前記1つのインピーダンス要素は、保護されるメアンダーパスのメーターあたり約0.1ミリオームより小さくないインピーダンスを持つ。
請求項9
請求項1に記載のFCL物品において、前記バッファ層は、前記膜の面内および面外の両方で2軸に整列された結晶を持つ少なくとも1つの2軸テキスチャーされた膜よりなる。
請求項10
請求項1に記載のFCL物品において、前記超電導物品は、本質的に前記HTS層の上に横たわる安定化層を持たない。
請求項11
請求項10に記載のFCL物品において、前記超電導物品は、本質的に前記キャップ層の上に横たわる安定化層を持たない。
請求項12
請求項1に記載のFCL物品において、前記超電導テープの超電導状態における臨界電流容量は、テープの幅あたり約5A/cmより小さくない。
請求項13
請求項1に記載のFCL物品において、前記超電導テープセグメントは、前記超電導テープセグメントの長さ方向に伸びる中心軸よりなり、該超電導テープセグメントは、局所的に回転せられた部分を形成するよう、前記中心軸の周りに回転せられている。
請求項14
請求項13に記載のFCL物品において、前記超電導テープは、前記局所的に回転せられた部分にて電気的コンタクトに結合されている。
請求項15
故障電流制限器であって、以下のものよりなる:ハウジング;前記ハウジングより伸びるブッシング;前記ブッシングに電気的に接続された前記ハウジング内のマトリックスアセンブリ、該マトリクスアセンブリは、少なくとも1つの超電導故障電流制限器アセンブリよりなり、これは:基板テープ;該基板の上に横たわるバッファ層;前記バッファ層の上に横たわる高温超電導(HTS)層、ここで、前記超電導テープセグメントは、連続的であるメアンダーパスを形成し、該メアンダーパスは、複数の巻き線を有する;および、前記超電導テープセグメントに電気的に接続された分路回路、よりなる。
类似技术:
公开号 | 公开日 | 专利标题
Larbalestier et al.2011|High-Tc superconducting materials for electric power applications
Weijers et al.2010|High field magnets with HTS conductors
Rupich et al.2003|YBCO coated conductors by an MOD/RABiTS/spl trade/process
EP1769542B1|2011-10-05|Novel superconducting articles
EP0401461B1|1995-08-09|Oxide superconductor and method of manufacturing the same
US6849580B2|2005-02-01|Method of producing biaxially textured buffer layers and related articles, devices and systems
EP1449265B1|2007-01-03|Superconductor cables and coils
CA2657445C|2015-03-24|Method of forming a multifilament ac tolerant conductor with striated stabilizer, articles related to the same, and devices incorporating the same
US7496390B2|2009-02-24|Low ac loss filamentary coated superconductors
US8886267B2|2014-11-11|Fault current limiting HTS cable and method of configuring same
CA2439947C|2012-07-10|Superconducting cable and superconducting cable line
US6925316B2|2005-08-02|Method of forming superconducting magnets using stacked LTS/HTS coated conductor
CN103069595B|2016-05-18|具有降低的ac损耗的多细丝超导体及其形成方法
RU2546127C2|2015-04-10|Многополосковый проводник и способ его изготовления
US6081987A|2000-07-04|Method of making fault current limiting superconducting coil
Cheggour et al.2003|Reversible axial-strain effect and extended strain limits in Y-Ba-Cu-O coatings on deformation-textured substrates
JP2007266149A|2007-10-11|超電導線材の接続方法及び超電導線材
CN1813317B|2014-03-12|新颖的超导制品及其形成和应用方法
DE69924898T2|2006-02-23|Resistiver Fehlerstrombegrenzer
Wu et al.1995|Properties of YBa2Cu3O7− δ thick films on flexible buffered metallic substrates
CN102655205B|2015-02-11|连接的超导制品
ES2403095T3|2013-05-14|Limitador de corriente de falla con una pluralidad de elementos de superconducción, y al menos uno con un contacto eléctrico entre su película superconductora y su substrato eléctricamente conductor
US20060073975A1|2006-04-06|Stacked filamentary coated superconductors
KR101156972B1|2012-06-20|자기적으로 분리된 초전도 전도체를 포함하는 전류 전송시스템
US8055318B1|2011-11-08|Superconducting integrated circuit technology using iron-arsenic compounds
同族专利:
公开号 | 公开日
US20090156409A1|2009-06-18|
CN101926067A|2010-12-22|
BRPI0820835A2|2015-06-16|
KR20100106486A|2010-10-01|
EP2223402A1|2010-09-01|
WO2009079591A1|2009-06-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]